Hochschule Niederrhein

University of Applied Sciences

und Verfahrenstechnik

Faculty of Mechanical and Process Engineering

Studienverlaufsplan M. Sc. PRIMA PO2011 (V2015)

Konstruktion

				Date	n				
PRIMA Abk.	Fächer/Module	Pr	Te	.V	Ü.	.P	.s	.sws	.ECTS
1 FSD	FEM in Statik und Dynamik	b	х		2 :	l 1		4	5
NUM	Numerische Methoden	b	х		3	L		4	5
SKW	Spezielle Kapitel der Werkstoffkunde	b					4	4	5
VPO	Versuchsplanung und Optimierung	b			3	L		4	5
.PRO1	.Einführungsprojekt	b				2	2	4	10
1 Ergebnis					8 3	3 3	6	20	30
2 BFN	Betriebsfestigkeit	b	х		2 :	l 1		4	5
PPG	Produktionsgerechte Produktgestaltung	b	х		2 :	l 1		4	5
SPE	Systematische Produkt- und Prozessgestaltung	b					4	4	5
TRI	Tribologie	b	х		2 :	l 1		4	5
.PRO2	.Vertiefungsprojekt	b				2	2	4	10
2 Ergebnis					6 3	3 5	6	20	30
3 FEMA	FEM Anwendungen	b			2	2		4	5
MAD	Maschinendynamik	b	х		1	3		4	5
PLM	Product Life Cycle Management	b	х		2	1	1	4	5
ÜFL	Überfachliches Lehrangebot	b	х		2 2	2		4	5
.PRO3	.Interdisziplinäres Projekt	b				2	2	4	10
3 Ergebnis					7 :	2 8	3	20	30
4 KOL	Masterkolloquium	b						0	3
MA	Masterarbeit	b					2	2	27
4 Ergebnis							2	2	30
Gesamtergebnis				2	1 8	3 16	17	62	120

Studienverlaufsplan M. Sc. PRIMA PO2011 (V2015) Kunststoffe

				Daten					
PRIMA Abk.	Fächer/Module	Pr	Te	.v	Ü.	.Р	.s	.sws	.ECTS
1 FKU	Fertigungstechnik Kunststoffe	b	х	2	1	1		4	5
FSD	FEM in Statik und Dynamik	b	х	2	1	1		4	5
NUM	Numerische Methoden	b	Х	3	1			4	5
VPO	Versuchsplanung und Optimierung	b		3	1			4	5
.PRO1	.Einführungsprojekt	b				2	2	4	10
1 Ergebnis				10	4	4	2	20	30
2 BFN	Betriebsfestigkeit	b	X	2	1	1		4	5
KKU	Konstruieren mit Kunststoffen	b	Х	2	1	1		4	5
PPG	Produktionsgerechte Produktgestaltung	b	х	2	1	1		4	5
SPE	Systematische Produkt- und Prozessgestaltung	b					4	4	5
.PRO2	.Vertiefungsprojekt	b				2	2	4	10
2 Ergebnis	2 Ergebnis			6	3	5	6	20	30
3 FEMA	FEM Anwendungen	b		2		2		4	5
PLM	Product Life Cycle Management	b	х	2		1	1	4	5
SKW	Spezielle Kapitel der Werkstoffkunde	b					4	4	5
ÜFL	Überfachliches Lehrangebot	b	X	2	2			4	5
.PRO3	.Interdisziplinäres Projekt	b				2	2	4	10
3 Ergebnis				6	2	5	7	20	30
4 KOL	Masterkolloquium	b						0	3
MA	Masterarbeit	b					2	2	27
4 Ergebnis							2	2	30
Gesamtergeb	nis			22	9	14	17	62	120

Hochschule Niederrhein

University of Applied Sciences

Faculty of Mechanical and Process Engineering

Studienverlaufsplan M. Sc. PRIMA PO2011 (V2015) Oberflächentechnik

					Daten					
PRIMA	Abk.	Fächer/Module	Pr	Te	.v	Ü.	.P	.s	.sws	.ECTS
1	FSD	FEM in Statik und Dynamik	b	х	2	1	1		4	5
	NUM	Numerische Methoden	b	х	3	1			4	5
	OFD	Oberflächendesign	b	Х	2	1	1		4	5
	VPO	Versuchsplanung und Optimierung	b		3	1			4	5
	.PRO1	.Einführungsprojekt	b				2	2	4	10
1 Ergeb	nis				10	4	4	2	20	30
2	PPG	Produktionsgerechte Produktgestaltung	b	Х	2	1	1		4	5
	SAM	Stochastische Analyse und Modellvalidierung	b		3	1			4	5
	TRI	Tribologie	b	х	2	1	1		4	5
	VAO	Verfahren und Alnagen der Oberflächentechnik	b	Х	2	1	1		4	5
	.PRO2	.Vertiefungsprojekt	b				2	2	4	10
2 Ergeb	nis				9	4	5	2	20	30
3	AOT	Anwendung der Oberflächentechnik	b		4				4	5
	SKW	Spezielle Kapitel der Werkstoffkunde	b					4	4	5
	sqs	Schichtanalytik und Qualitätssicherung	b	х	2	1	1		4	5
	ÜFL	Überfachliches Lehrangebot	b	Х	2	2			4	5
	.PRO3	.Interdisziplinäres Projekt	b				2	2	4	10
3 Ergeb	nis				8	3	3	6	20	30
4	KOL	Masterkolloquium	b						0	3
	MA	Masterarbeit	b					2	2	27
4 Ergeb	nis							2	2	30
Gesami	tergebnis				27	11	12	12	62	120

Studienverlaufsplan M. Sc. CAPE PO2011 (V2015)

					Daten					
CAPE	Abk.	Fächer/Module	Pr	Te	.v	.ü	.Р	.s	.sws	.ECTS
1	MBB	Modellbildung und Bilanzgleichung	b		3	1			4	5
	MBF	Modellbildung Fluidmechanik	b					4	4	5
	NUM	Numerische Methoden	b	Х	3	1			4	5
	VPO	Versuchsplanung und Optimierung	b		3	1			4	5
	.PRO1	.Einführungsprojekt	b				2	2	4	10
1 Ergel	onis				9	3	2	6	20	30
2	HTD	Höhere Thermodynamik	b	х	2	1	1		4	5
	SAM	Stochastische Analyse und Modellvalidierung	b		3	1			4	5
	.PRO2	.Vertiefungsprojekt	b				2	2	4	10
	HCBV	Höhere chemische und Bio-Verfahrenstechnik	b					4	4	5
	HMVT	Höhere mechanische Verfahrenstechnik	b	Х	2	1	1		4	5
2 Ergel	onis				7	3	4	6	20	30
3	HTV	Höhere thermische Verfahrenstechnik	b	Х	2	1	1		4	5
	PSI	Prozesssimulation	b	Х	2		2		4	5
	ÜFL	Überfachliches Lehrangebot	b	Х	2	2			4	5
	.PRO3	.Interdisziplinäres Projekt	b				2	2	4	10
	SET	Spezielle Kapitel der Energietechnik	b	х	2	1	1		4	5
3 Ergel	onis				8	4	6	2	20	30
4	KOL	Masterkolloquium	b						0	3
	MA	Masterarbeit	b					2	2	27
4 Ergel	onis							2	2	30
Gesam	tergebnis				24	10	12	16	62	120